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Abstract
A comprehensive phenomenological calculation is reported for the pressure-
dependent structural phase transition, equation of state and elastic properties
of Ux La1−x S solid solution. We develop an effective interionic interaction
potential incorporating the long-range Coulomb and the Hafemeister and
Flygare form of short-range overlap repulsion extended up to the second-
neighbour ions and van der Waals (vdW) multipole interactions. The
overlapping of the f orbitals with the p orbitals of the nearest neighbour in
Ux La1−x S that influences the effective Coulomb interactions is noticed to be
a potential parameter in revealing the structural phase transition (from NaCl
type (B1) to CsCl type (B2)) as well the equations of state of UxLa1−xS
(x = 0, 0.08, 0.40, 0.50, 0.60, 0.80 and 1.0) rare-earth compounds. The
calculated results have revealed reasonably good agreement with the available
data on the phase transition pressures (Pt = 25.5 (LaS), 30 (U0.08La0.92S), 34
(U0.40La0.60S), 35 (U0.50La0.50S), 47 (U0.60La0.40S), 59 (U0.80La0.20S) and 81
(US) GPa). The equation of state curves (plotted between V (P)/V (0) and
pressure) for both the NaCl-type (B1) and CsCl-type (B2) structures obtained
by us are in fairly good agreement with the experimental results. Deduced
values of the volume collapses [�V (P)/V (0)] are also closer to their observed
data. Further, the variations of the second- and third-order elastic constants
with pressure have followed a systematic trend, that is almost identical to those
exhibited by the measured and observed data in other compounds of NaCl-type
structure family.
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1. Introduction

Rare-earth compounds, especially uranium monochalcogenides (5f3), attract considerable
attention due to the intricate electronic properties relating to the highly correlated
f electrons [1]. At ambient conditions the rare-earth monochalcogenides are characterized
by a fixed fn configuration of atomic-like f electrons. The application of pressure eventually
decreases the lattice spacing, leading to the destabilization of the f shell. The rare-earth
compounds such as Ux La1−x S exhibit the simple rock salt structure; one can vary the uranium–
uranium spacing to investigate the change in structural, electronic and magnetic behaviour as
the degree of electron localization changes from localized to itinerant behaviour [2, 3], as a
consequence of changes in the chemical environment.

Pressure is one of the external parameters by which the interplay of the f electrons with the
normal conduction electrons may be varied. As the nature of the f-electron states depends on
the f-orbital overlaps, these can be tuned in a controlled manner by changing the interatomic
distance by applying external pressure [4]. Thus, the physical properties of the f-electron-based
systems are substantially changed and studies on pressure effects in these systems appears to
be quite exciting [5].

The rare-earth monopnictides and monochalcogenides are some of the structurally simplest
materials, and numerous experimental works have studied the pressure behaviour of these
compounds because high-quality single crystals have been prepared successfully. Muon spin
relaxation measurements are powerful probes in determining the magnetic characteristics of
materials with magnetic ions. Grosse et al have carried out muon spin rotation/relaxation
(μ SR) measurements on single crystals of Ux La1−x S in the temperature range between 0.1
and 300 K [6]. They argued that all compounds except the diamagnetic LaS exhibit a magnetic
transition with the transition temperature decreasing linearly with diminishing uranium content.
In addition, Schoenes et al have systematically studied the effect of diluting US with LaS, a
pseudobinary compound, and found that the degree of localization varies non-monotonically
and, in a certain range, contrary to the U–U separation [7]. Henceforth, hybridization and
magnetic exchange play a dominant role in UxLa1−xS rare-earth compounds.

The investigations of structural, mechanical and vibrational properties of semiconducting
alloys under pressure are now routinely being performed by means of ab initio calculations.
The accuracy of total energies obtained within the local density approximation is in many cases
sufficient to predict which structure, at a given pressure, has the lowest free energy, although
most calculations still refer to zero temperature. Furthermore, by comparing the free energies
of various guessed crystal structures, ab initio molecular dynamics methods allow a better
determination of the structures and understanding of transformation mechanisms, since they
perform the structural optimizations. However, with the rapid advancement of computational
techniques, the nature of interatomic forces is still not properly interpreted for these materials,
and phenomenological lattice dynamical models, which take into account various interaction
energies for the determination of stable structure, cover the chemical trends in the atomic
characteristics.

For several years Cooper and his collaborators have performed ab initio calculations by
assuming the existence of f–d hybridization in order to understand the magnetic properties of
uranium compounds [8–11]. The first-principles calculations on hybridization effects [8] and a
comparison of results for cerium and uranium show the difference between almost localized and
almost itinerant magnetism for compounds of Ce and U, respectively. A newly proposed two-
electron band theory approach could predict the Wilson ratio for heavy-fermion systems [9].
Moreover, the model of two kinds of uranium f electron, namely localized magnetic and
itinerant nonmagnetic [11], explains quite well the drastic decay of the ordered moments by
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alloying. As a proper reference material the effect of diluting US with LaS, the high-pressure
structural properties of ULaS solid solutions have not been investigated in detail.

In any doped rare-earth compound, an understanding of its properties must be preceded
by x-ray diffraction study of the doping impurities. Bihan et al performed x-ray diffraction
measurements under pressure on seven different compositions in the Ux La1−x S system (x =
0, 0.08, 0.40, 0.50, 0.60, 0.80, 1.0) with different pressure-transmitting media [12]. All the
compounds have the NaCl-type (B1) structure at ambient pressure, but show different behaviour
under pressure. Furthermore, for doping concentration x � 0.60 the compounds show a phase
transformation from the ambient NaCl structure to the CsCl-type structure while, for x � 0.60,
the high-pressure phase has yet to be determined. In addition, the structural and elastic studies
on lanthanum mono-chalcogenides have further widened the scope of future theoretical and
accurate experimental investigations of the crystallographic phase transition from B1 to B2 in
rare-earth compounds [13, 14].

Among the lattice models which have been invoked so far to discuss the mechanical
properties of several solids and alloys, the charge-transfer approach [15], following Hafemeister
and Flygare type overlap repulsion has been extended up to second-neighbour ions besides
short-range interactions [16]. We refer to the pioneering work of Fumi and Tosi, who properly
incorporate van der Waals (vdW) interactions along with dipole–dipole (d–d) and dipole–
quadrupole (d–q) interactions to reveal the cohesion in several ionic solids [17]. In trying
to understand the structural aspects, we admit that the vdW attractions are the cornerstone of
lattice phenomenological models that is ignored in the first-principles microscopic calculations.

Motivated from the earlier first-principles calculations [8, 11] and the phenomenological
lattice models [15] for the successful description of the phase transition and high-pressure
behaviour of several binary semiconductors, we thought it pertinent to employ the two-body
interactions that include vdW attraction, which is not explicitly accounted for in the first-
principles pseudopotential, for the estimation of structural and elastic properties in rare-earth
monochalcogenides. We shall see that vdW interactions are effective in revealing the elastic
and structural properties of these compounds. For this purpose we use an effective interionic
potential model, proposed earlier, for the rare-earth compounds [13].

In trying to understand the structural and mechanical aspects of doped lanthanum
monochalcogenides, we shall aim at assessing whether the developed effective interionic
potential (EIoIP), which includes the effect of f-electron screening on the Coulomb interactions
between the ions through a modified charge parameter, can explain the reported pressure-
dependent behaviour in these compounds. We examine first the suitability of this potential
to predict the NaCl to CsCl structure transformation in this group of rare-earth compounds.
Later on we compute the phase transition pressures, relative volume changes and variations of
second-order elastic constants with pressure with earlier developed potential.

The essentials of the lattice model and the method of computations are given in section 2.
Theoretical results are compared and discussed with the existing first-principles, experimental,
and predicted data, and are presented in section 3. A summary of results obtained in the
previous section is presented in section 4.

2. Details of the model

The phenomenological lattice models for a solid-state structural transformation with
hydrostatic pressures have been known in the thermodynamic limit. Usually, an increase in
the static pressure on a crystal leads to a decrease in its volume. Thermodynamically, an
isolated phase is stable only when its free energy is minimum for the specified conditions.
As the temperature or pressure or any other variable acting on the systems is altered, the Gibbs
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free energy changes smoothly and continuously. A phase transition is said to occur when the
changes in structural details of the phase are caused by such variations of free energy.

The doped rare-earth monochalcogenides transform from their initial B1 (NaCl) to B2
(CsCl) structure under pressure. For this purpose, the Gibbs free energy is generically defined
as follows:

G = U + PV − T S, (1)

where U is the internal energy or lattice energy assumed to consist of the long-range Coulomb
force which at 0 K corresponds to the cohesive energy, and S is the vibrational entropy at
absolute temperature T , pressure P and volume V . Indeed, the static transition pressures have
been obtained in the thermodynamic limit by solving for the pressure that makes the Gibbs free
energies of both phases equal.

The structural phase stability of a particular structure is decided by the minima of the
Gibbs free energy. Since these theoretical calculations are performed at T = 0 K, the Gibbs
free energy became equal to the enthalpy, H = U +PV . For a given pressure, a stable structure
is one for which thermodynamic potential (G or H ) has its lowest value. We have estimated
the Gibbs free energy for both the B1 and B2 phases. The Gibbs free energies of both phases
are as follows:

GB1(r) = UB1(r) + PVB1 (2)

at T = 0 K for the rock salt (RS) B1 (real) phase and

GB2(r
′) = UB2(r

′) + PVB2 (3)

at T = 0 K for the CsCl (CC) B2 (hypothetical) phase. At the phase transition pressure
P , the Gibbs free energy difference is �G[= GB2(r ′) − GB1 (r )]. Here, VB1 = 2r 3 and
VB2 = [8/3

√
3]r ′3 as the unit cell volume for the B1 and B2 phase, respectively. The notations

UB1 and UB2 denote cohesive energies of real B1 and hypothetical B2 phases, respectively, and
are written as

UB1(r) = −α
e2 Z 2

m

r
+ 6Vi j(r) + 6Vii(r) + 6Vj j(r) (4)

and

UB2(r
′) = −α′ e

2 Z 2
m

r ′ + 8Vi j(r
′) + 3Vii (r

′) + 3Vj j(r
′). (5)

Here, α(=1.7475) and α′(=1.7627) are the Madelung constants for the NaCl and CsCl
structure, respectively. The long-range Coulomb is represented by the first term; the second
term corresponds to the Hafemeister and Flygare [16] form of short-range repulsive energies;
and the van der Waals multipoles are represented by the third and fourth terms, respectively.
The nearest-neighbour (nn) separation r (r ′) corresponds to the NaCl (CsCl) phase. As pointed
out earlier, for the structural changes in uranium-doped rare-earth monochalcogenides, it is the
pressure as an external parameter that influences the f-electron orbitals. It is then necessary
to introduce some simplifying assumptions without loss of generality. We assume that Z 2

m
is the modified charge and parametrically includes the effect of Coulomb screening by the
delocalized f electrons. The short-range repulsive potential (Vi j ) (in equations (4) and (5)) for
both the phases between the ions is as follows:

Vi j = bβi j exp

(
ri + r j − ri j

ρ

)
+ ci jr

−6
i j + di jr

−8
i j ; i, j = 1, 2, (6)

b and ρ being the short-range parameters. The Pauling coefficients βi j are defined as βi j =
1 + (Zi/ni) + (Z j/n j) with Zi (Z j ) and ni (n j ) as the valency and number of outermost
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electrons, respectively [18]. We obtain βi j = 1.0, βii = 1.5 and β j j = 0.5, similar to values
for most of the NaCl-type compounds. ri (r j ) are the cation (anion) radii. The symbols ci j

and di j are the van der Waals (vdW) coefficients. ri j is the nearest-neighbour distance. The
effective interionic potential can then have three free parameters: modified ionic charge (Zm),
range (b) and hardness (ρ), which can be determined from the known crystal properties. The
last two terms in equation (6) are the van der Waals (vdW) energy due to dipole–dipole (d–d)
and dipole–quadrupole (d–q) interactions.

The study of the second-order elastic constants (SOECs) (C11, C12 and C44) and their
pressure derivatives at 0 K is quite important for understanding the nature of the interatomic
forces in rare-earth chalcogenides as ULaS solid solutions. Since these elastic constants
are functions of the first- and second-order derivatives of the short-range potentials, their
calculations will provide a further check on the accuracy of short-range forces in these
materials.

The effective interionic interaction potential (EIoIP) in equation (6) corresponds to a
dynamical matrix in terms of force constants. The elements of the Coulomb, the repulsive
interaction matrix are determined from the derivatives of EIoIP [19] and are then obtained for
B1 by subjecting the dynamical matrix to the long-wavelength limit. The expressions for the
SOECs for B1 phase are

C11 = e2

4r 4
0

[
−5.112Z 2

m + A1 + (A2 + B2)

2

]
, (7)

C12 = e2

4r 4
0

[
0.226Z 2

m − B1 + (A2 − 5B2)

4

]
, (8)

C44 = e2

4r 4
0

[
2.556Z 2

m + B1 + (A2 + 3B2)

4

]
, (9)

where (A1, B1) and (A2, B2) are the short-range parameters for the nearest and the next-nearest
neighbours, respectively, and are defined as

A1 = 4r 3
0

e2

[
d2

dr 2
Vi j

]
r=r0

, (10)

A2 = 4(r0

√
2)3

e2

[
d2

dr 2
Vii + d2

dr 2
Vj j

]
r=r0

√
2

, (11)

B1 = 4r 2
0

e2

[
d

dr
Vi j

]
r=r0

, (12)

B2 = 4(r0

√
2)2

e2

[
d

dr
Vii + d

dr
Vj j

]
r=r0

√
2

. (13)

Here, Vi j and Vii (Vj j) are the overlap potentials between the nearest and the next-nearest
neighbours, respectively. r0

√
2 denotes the next-nearest-neighbour distance in the B1 phase.

Given the effective interionic potential and its applications to various thermodynamic and
elastic properties for the chosen material, we now began to estimate and compute numerically
the high-pressure phase transition and elastic properties for the B1 phase.

3. Discussion and analysis of results

With application of pressure a new crystal phase appears in the materials and the relative
stability of the two crystal structures naturally requires an extremely accurate prediction.
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Table 1. The values of van der Waals coefficients ci j (i, j = 1, 2) (in units of 10−60 erg cm6), di j

(i, j = 1, 2) (in units of 10−76 erg cm8) and overall van der Waals coefficients (C, D) for Ux La1−x S
compounds.

Compound cii ci j c j j C dii di j d j j D

LaS 35.2 98.6 305.1 957.7 20.4 86.8 332.9 674.7
U0.08La0.92S 29.8 90.7 305.1 900.8 17.3 79.8 332.9 630.8
U0.40La0.60S 12.6 59.2 305.1 677.2 7.3 52.1 332.9 456.1
U0.50La0.50S 8.8 49.3 305.1 608.7 5.1 43.4 332.9 401.9
U0.60La0.40S 5.6 39.4 305.1 540.8 3.2 34.7 332.9 347.8
U0.80La0.20S 1.4 19.7 305.1 406.9 0.82 17.3 332.9 240.2
US 7.8 45.5 395.0 663.9 3.02 50.5 570.9 540.0

Theoretical studies of cohesive, structural and vibrational properties of semiconductors under
pressure are now accurately being performed by means of ab initio calculations. On the
other hand, several empirical models suggest that the key for predicting relative structural
energies is not absolute accuracy but to carefully incorporate the chemical trends in the atomic
characteristics. It is widely believed that phenomenological models are interpretative rather
than predictive of the stability of phases.

While discussing the stability of crystal structures and the pressure-induced phase
transition theoretically it is essential to estimate the total free energy of crystals which consist
of ions and valence electrons. The contributions from the system of electrons to the total
energy of the crystal are intimately connected with the mechanism of cohesion and interatomic
bonding in the crystals. We need to determine the most stable structure at finite pressure and
temperature in terms of the thermodynamic potential as Gibbs free energy G = U + PV − T S.
The structure with lowest free energy is the most stable. However, it is difficult to minimize the
free energy from randomly generated structures even with highly sophisticated computational
techniques. To further simplify our calculations, the temperature has been set to zero, i.e., the
entropy of the crystal is therefore ignored. It may be mentioned here that the contribution of
temperature to free energy is small for the experimental data considered.

The effective interionic potential (EIoIP) is constructed in a hierarchical and easily
generalizable manner so that the structural and elastic properties are interpreted in an ordered
way. For such purposes we have then three material-dependent parameters, namely the
modified ionic charge, range and hardness (Zm, ρ and b), which have been evaluated from
the equilibrium condition [19]∣∣∣∣dU(r)

dr

∣∣∣∣
r=r0

= 0 (14)

and the bulk modulus (BT):∣∣∣∣d2U(r)

dr 2

∣∣∣∣
r=r0

= (9kr0)
−1 BT (15)

using the experimental values of lattice constant and bulk modulus (BT).
The values of the van der Waals (vdW) coefficients (ci j and di j ) and the overall vdW

coefficients (C and D) have been evaluated from the well-known Slater–Kirkwood variational
method [20] and are listed in table 1. It is worth pointing out that the values of the vdW
coefficients depend on the polarization and ionic radii and hence there is a difference in the
vdW coefficients of LaS and Ux La1−x S. We consider all the compounds to be partially ionic.

It is instructive to point out that the mixed crystals, according to the virtual crystal
approximation [21], are regarded as an array of average ions whose masses, force constants
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Table 2. Crystal data and model parameters for Ux La1−x S compounds.

Material parameters Model parameters

Compounds ri (Å) r j (Å) a0 (Å) BT (GPa) Z2
m b (10−12 erg) ρ (10−1 Å)

LaS 1.04a 1.24a 5.852b 89c 3.18 7.83 3.05
US 0.80a 1.24a 5.489d 90e 2.924 9.48 3.07
U0.08La0.92S 2.56 7.962 3.052
U0.40La0.60S 2.856 8.49 3.058
U0.50La0.50S 2.924 8.655 3.06
U0.60La0.40S 3.43 8.82 3.062
U0.80La0.20S 3.92 9.15 3.066

a Reference [23].
b Reference [24].
c Reference [12].
d Reference [1].
e Reference [25].

and effective charges are considered to scale linearly with concentration. These facts allow us
to first estimate the material parameters for both binary compounds. We can now pay particular
attention for the doping in lanthanum monochalcogenides. In what follows we assume that
these parameters vary linearly with the doping concentration (x), and hence Vegard’s law [22]
is appropriate:

b(UxLa1−xS) = (1 − x)b(LaS) + xb(US), (16)

and

ρ(Ux La1−x S) = (1 − x)ρ(LaS) + xρ(US). (17)

The input data for undoped and doped uranium chalcogenides with their relevant
references and the deduced model parameters from the knowledge of ionic radii [23],
equilibrium distance (r0), the bulk modulus (BT) and the Cauchy violation (C12–C44) are given
in table 2. It is perhaps worth remarking that we have deuced the values of the material
parameters modified ionic charge (Z 2

m), hardness (b) and range (ρ) from the knowledge of
the equilibrium distance [1, 24] and the bulk modulus [12, 25] following the equilibrium
conditions [19]. The input data along with their relevant references and the model parameters
for UxLa1−xS compounds are given in table 2. The consistency between model calculations
and reported values of phase transition pressures is attributed to the facts that the ionic charge
parameters vary non-monotonically with concentration in Ux La1−x S.

Figure 1 shows the variation of modified ionic Z 2
m of Ux La1−x S compounds as a function

of concentration (x). It is inferred from the plot that the value of Z 2
m is lower for lower

doping concentration of U and increases with higher x . For x ∼= 0.0, i.e. LaS, x ∼= 0.5,
i.e. U0.5La0.5S and x ∼= 1.0, i.e. US, the value of Z 2

m is nearly the same. This can be readily
understood by considering their electronic structure. In the domain (0.0 < x < 0.5), the
number of f-electron sites is less as compared to higher x , while the reverse is true for the
doping concentration range 0.5 < x < 1.0. Hence, for low U concentration the system
Ux La1−x S shows a highly delocalized nature, while for higher U, the system shows more
stable f3 sites. It is worth commenting that the valence state of U ions changes around the
critical concentration xc ≈ 0.50: the limit between the 3+ and the 4+ valence states for the U
ions is not far away. Nevertheless, one has to note that both the 3+ and the 4+ ground states are
magnetic, so a valence change alone does not explain the collapse of the magnetic ordering [7].
We note that the abnormal behaviour of U–La–S system cannot be only ascribed to a change in

7
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Figure 1. Variation of effective charge Z2
m with concentration (x) for Ux La1−x S.

Figure 2. Variation of Gibbs free energy difference with pressure for LaS.

the 5f localization and actually the effects observed could also be related to a local distortion
occurring in the S lattice. Another possibility is that there may be a metastable ordered phase
around x = 0.5. The above argument needs a detailed study of the phase diagram and we shall
address this in the near future. Two other short-range parameters, b and ρ, follow a linear trend
of variation with x . However, Bihan et al [12] have earlier stressed that Vegard’s law is not
valid in the intermediate doping region.

In an attempt to reveal the structural phase transition of the UxLa1−xS compounds, we
minimize the Gibbs free energies GB1(r) and GB2(r ′) for the equilibrium interatomic spacing
(r ) and (r ′). The Gibbs free energy difference �G[=GB2(r ′) − GB1(r)] has been plotted
as a function of pressure (P) in figures 2–4 by using the interionic interaction potential

8



J. Phys.: Condens. Matter 19 (2007) 346212 D Varshney et al

Figure 3. Variation of Gibbs free energy difference with pressure for US.

Figure 4. Variation of Gibbs free energy difference with pressure for Ux La1−x S.

discussed above. Let us summarize the results of the plots. The pressure corresponding to �G
approaching zero is the phase transition pressure (Pt) (indicated by arrows in figures). At zero
pressure, the B1 crystal is thermodynamically and mechanically stable, which is in agreement
with the experimental result, and it will remain stable until the pressure reaches a value of
about 25.5 (LaS), 30 (U0.08La0.92S), 34 (U0.40La0.60S), 35 (U0.50La0.50S), 47 (U0.60La0.40S),
59 (U0.80La0.20S) and 81 (US) GPa (transition pressure). At the transition pressure the
thermodynamic potentials of both the phases are equal. As pressure increases, beyond the
phase transition pressure (Pt), the thermodynamic potential of the B2 phase becomes lower,
and hence this phase becomes mechanically and thermodynamically stable (its �G function
value is more negative than that of B1 crystal).

9
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Table 3. Calculated transition pressures and volume collapse of Ux La1−x S compounds.

Compound Transition pressure (GPa) Volume collapse (%)

LaS B1 → B2 25.5 (25a, 24.9b) 8.1 (8.4b)
U0.08La0.92S B1 → B2 30 (29a) 7.6
U0.40La0.60S B1 → B2 34 (32a) 6.8
U0.50La0.50S B1 → B2 35 (33a) 6.8
U0.60La0.40S B1 → B2 47 (45a, 47a) 7.1 (7.3a)
U0.80La0.20S B1 → B2 59 (56a) 6.9
US B1 → B2 81 (80a) 4.7

a The quantities are experimental data, [12].
b The quantities are other theoretical work, [14].

For pressures higher than the theoretical thermodynamic transition pressure, the B1 crystal
becomes thermodynamically unstable and the B2 phase remains stable up to the greatest
pressure studied (≈100 GPa). In UxLa1−xS compounds a crystallographic transition from B1
to B2 occurs. These results may be successfully compared with those available experimental
data [12] and other theoretical work [14] and are listed in table 3. The estimated value of the
Pt for LaS is in agreement with that obtained from the tight-binding linear muffin-tin orbital
approach (TB-LMTO) [14]. In this sprit we point out that for x � 0.60, the high-pressure phase
has yet to be determined and present EIoIP has correctly predicted the stable crystallographic
structure as CsCl and a phase transition from B1 to B2 phase of x = 0.80 and 1.0. It is
interesting to note that the transition pressure increases from LaS to US. The driving force of
the structural phase transition is in this picture, seen as the hybridization of f orbitals with s-
and p-like state. Furthermore, in the high-pressure phase of these compounds the f-electron
localization increases from LaS to US, which may be the reason for the higher transition
pressure. We should emphasize that our conclusions in Ux La1−x S have been established only
within the developed effective interionic interaction potential (lattice model) that we dealt with.

The pressure–volume relation of Ux La1−x S was determined from Murnaghan equation of
state that accounts for the values of the relative volumes V (P)/V (0) associated with various
compressions as [19]

V

V0
=

(
1 + B ′

B0
P

)− 1
B′

, (18)

where V0 is the cell volume at ambient conditions, B0 is the bulk modulus and B ′ its pressure
derivative. The estimated value of the pressure-dependent radius for both the structures, the
curve of volume collapse with pressure to depict the phase diagram is illustrated in figure 5. It
is noticed from the plot that the present approach has predicted correctly the relative stability
of competitive crystal structures, as the values of �G are positive. This is in agreement with
the fact that a volume collapse occurs at the B1–B2 transition, and the U–U distances become
smaller than the Hill limit [26], so the 5f bands can directly overlap and the f electrons are
delocalized in Ux La1−x S. The magnitude of the discontinuity in volume at the transition
pressure is obtained from the phase diagram and their values, tabulated in table 3, are in fairly
good agreement with those revealed from experiments [12] and the tight-binding linear muffin-
tin orbital approach (TB-LMTO) [14].

In order to complete the study of the high-pressure elastic behaviour of UxLa1−xS
compounds, we have computed the second-order elastic constants (SOECs) and their variation
with pressure as shown in figure 6. We note that C44 decreases linearly with the increase of
pressure away from zero at the phase transition pressures. In contrast, the values of C11 and
C12 increase linearly with pressure. The above feature is quite similar to the earlier reported
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Figure 5. Pressure–volume diagram of Ux La1−x S.

pressure dependence of elastic stiffness for PbTe and SnTe possessing the NaCl structure with
B1 to B2 structural phase transition [27]. Furthermore, the observed decrease in C44 suggested
that softening of the lattice occurred with increasing in pressure. Softening of the same mode
has previously been observed in the NaCl-type structure of MnO system [28]. It is instructive

11
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Figure 6. Variation of second-order elastic constants of Ux La1−x S with pressure.

to mention that pressure-induced phonon softening has been found for the transverse acoustic
(TA) branch as expected for the NaCl structure [29]. For better understanding, we plot the
variation of the combination of SOECs elastic stiffness [CL = (C11 + C12 + 2C44)/2] and
shear moduli [CS = (C11 − C12)/2] in figure 7. We observed that CL(CS) increases linearly

12
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Figure 7. Variation of the combination of second-order elastic constants of Ux La1−x S with
pressure.

with increase in the pressure and in accordance with the first-order character of the transition
for these compounds.
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Table 4. Bulk modulus (BT), shear modulus (C44) and tetragonal modulus (σ ) for Ux La1−x S
compounds.

Compounds BT (GPa) C44 (GPa) σ (GPa)

LaS 69 (89 ± 3)a(107)b 46 50.5
U0.08La0.92S 45 (85 ± 2)a 26.9 36.6
U0.40La0.60S 56.5 (76 ± 4)a 30.2 45.1
U0.50La0.50S 58.7 (90 ± 1)a 30.8 46.8
U0.60La0.40S 73.9 (100 ± 2)a 39 56.8
U0.80La0.20S 88.3 (99 ± 3)a 47 65.9
US 66.1 (100 ± 1)a 54.6 (21 ± 1)a 40.2

a The quantities are experimental data, [12, 25].
b The quantities are from other theoretical work, [14].

In passing, we refer to the Born criterion of a lattice to be mechanically stable, which states
that the elastic energy density must be a positive definite quadratic function of strain. The result
is that the principal minors (alternatively the eigenvalues) of the elastic constant matrix should
all be positive. The stability of a cubic crystal is expressed in terms of elastic constants as
follows [13]:

BT = (C11 + 2C12)/3 > 0, (19)

C44 > 0, (20)

and

σ = (C11 − C12)/2 > 0. (21)

Ci j are the conventional elastic constants and BT is the bulk modulus. The quantities C44 and σ

are the shear and tetragonal moduli of a cubic crystal. Estimated values of bulk modulus, shear
moduli and tetragonal moduli are tabulated in table 4, well satisfying the above elastic stability
criteria for Ux La1−x S compounds.

We refer to Vukcevich, who proposed a high-pressure stability criterion for ionic crystals,
combining mechanical stability with minimum energy conditions [30]. In accordance, the
stable phase of the crystal is one in which the shear elastic constant C44 is nonzero (for
mechanical stability) and which has the lowest potential energy among the mechanically stable
lattices. It is true that the agreement between the theoretical and the experimental value of BT is
not of the desired degree, but this may be because we have derived our expressions neglecting
thermal effects and assuming the overlap repulsion significant only up to nearest neighbours in
Ux La1−x S.

We now switch to discuss the elastic properties of doped uranium chalcogenides within
the framework of developed interionic interaction potential. We have noticed that the shear
elastic constant C44 is a very small quantity; the calculated value of [(4r0/e2)C44 − 0.556Z 2

m]
is found to be a negative quantity, so (A2 − B2) is negative. This suggests that these terms
belong to an attractive interaction and possibly arise due to the van der Waals energy. Based on
this observation we suggest that the van der Waals energy converges quickly, but the overlap
repulsion converges much more quickly.

The above fact implies that the second-neighbour forces in Ux La1−x S are entirely due
to the van der Waals interaction and the first-neighbour forces are the results of the overlap
repulsion and the van der Waals attraction between the nearest neighbours. On the other hand,
at high pressure the short-range forces for these compounds increase significantly, which, in
turn, is responsible for the change in the coordination number and phase transformation. Other
than deriving the equation of states correctly from a model approach and then analysing the
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Table 5. The values of pressure derivatives of SOECs (dBT/dP, dC44/dP and dCS/dP) and
TOECs (C111, C112, C123, C144, C166 and C456) (in units of 1011 N m−2).

Quantities LaS U0.08La0.92S U0.4La0.6S U0.5La0.5S U0.6La0.4S U0.8La0.2S US

dBT/dP 4.52 8.59 8.50 8.48 8.49 8.47 4.06
dC44/dP −0.60 −0.12 −0.05 −0.04 −0.05 −0.11 −0.5
dCS/dP 10.10 9.93 9.68 9.68 9.49 9.37 6.57
C111 −30.5 −20.07 −24.54 −25.24 −30.74 −35.85 −23.24
C112 −0.88 −0.48 −0.62 −0.64 −1.08 −1.074 −2.40
C123 0.04 0.03 0.04 0.038 0.045 0.05 0.71
C144 0.04 0.03 0.04 0.038 0.045 0.05 0.71
C166 −0.79 −0.42 −0.54 −0.56 −0.87 −0.96 −2.50
C456 0.09 0.06 0.08 0.08 0.095 0.12 0.66

variation of short-range forces, at present we have no direct means to understand the interatomic
forces at high pressure.

We also analyse the anharmonic properties of UxLa1−xS compounds by computing
the third-order elastic constants (TOECs) and the pressure derivatives of SOECs at zero
pressure [15]. The values of the pressure derivatives of SOECs (dCS/dP, dBT/dP and
dC44/dP) are listed in table 5. A reasonably good agreement with available experimental
results for dBT/dP has been obtained in all the cases under consideration. Also, the variation
of TOECs with pressure is shown in figure 8. It can be seen that the variation of third-order
elastic constants with pressure points to the fact that the values of C111, C112, C123, C166, C456

are negative while those of C144 are positive as obtained from the effective interionic potential
at zero pressure. Thus, we can say that, in Ux La1−x S, the developed EIoIP consistently explains
the high-pressure and elastic behaviour.

Apart from the phase transition and pressure dependence of SOECs in Ux La1−x S, we have
also estimated the Debye temperature (θD) in the present approach. We define [13]

θ3
D = 3.15

8π

(
h

kB

)3 ( r

M

) 3
2 [(C11 − C12)/2]1/2[(C11 + C12 + 2C44)/2]1/2[C44]1/2. (22)

Here, M is the acoustic mass of the compounds, and h and kB are the Planck and Boltzmann
constants, respectively. It is inferred for figure 9 that θD varies linearly with pressure for all
the compounds and this is attributed to softening of the lattice with pressure. The calculated
values of the Debye temperature at zero pressure are consistent with the reported data,
255 K (235.4 [14], 276 [31] K) for LaS and 235 K (239 [32], 205 ± 2.5 [33] K) for US,
respectively.

We do not claim the process to be rigorous, but an agreement following the EIoIP
consistent with experiments and other work is obtained on the Debye temperature. A systematic
decrease in θD is noticed with increasing U doping concentration; however, due to large value
of BT, US does not follow the systematic trend, being the end member of the series. The reason
for above needs careful study of heat capacity behaviour in these compounds to address why
US and LaS are so different from other intermediate phases. Usually, the Debye temperature
is also a function of temperature, and it varies from technique to technique and depends on the
sample quality with a standard deviation of about 15 K.

One approximates that this result motivates the definition of an ‘average’ elastic constant
as

C =
(

8π

3.15

) 2
3
(

kB

h

)2 (
M

r

)
θ2

D, (23)
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Figure 8. Variation of third-order elastic constants of Ux La1−x S with pressure.

which in turn is calculated from the Debye temperature and allows us to correlate the Cauchy
discrepancy in the elastic constant as follows

C∗ = C12 − C44

C12 + C44
, (24)
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Figure 9. Variation of Debye temperature θD of Ux La1−x S with pressure.

Figure 10. The ‘average’ elastic constant C as a function of Cauchy discrepancy of Ux La1−x S
compounds.

at zero pressure. Figure 10 shows the variation of ‘average’ elastic constant (C) with Cauchy
discrepancy (C∗) for UxLa1−xS compounds. It is worth mentioning that C44 is larger as
compared to C12, which is consistent with the available experimental data on PbTe and SnTe
possessing the NaCl structure with B1 to B2 structural phase transition [27]. However, we note
that the rare-earth monochalcogenides with NaCl-type structure (B1 to B2 structural phase
transition) [13] and diluted magnetic semiconductors with zinc blende structure (B3 to B1
structural phase transition) [34] and most of the body-centred cubic transition metals shows a
positive Cauchy deviation C∗.

4. Conclusions

To determine the stable structure at finite pressure and temperature, the Gibbs free energy
should be considered; the structure with lowest free energy is the most stable. The
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realistic description of structural and mechanical properties needs to take into account various
interactive forces when the lattice is strained and a balance of them to attend the stable
structure depending upon the ionic nature. With this idea we have therefore calculated the
pressure-induced structural and elastic properties of Ux La1−x S solid solutions with stable
rock salt structures by considering various interionic interactions. As an approximation and
simplification, the temperature has been set to zero so that the entropy of the crystal is therefore
ignored. This is in the spirit of the fact that the contribution of temperature to the free energy
is small for the experimental data considered.

An effective interionic interaction potential is formulated in analysing the structural as well
as elastic properties in Ux La1−x S compounds. The trivalent phase of the U monochalcogenides
becomes relevant at high pressure and the substituted compounds show a first-order phase
transition towards a CsCl-type phase at a critical pressure. It is worth mentioning that the CsCl
structure favours the f–f mixing processes, and hence the formation of f bands, because the U–U
distance in the CsCl structure is shorter than in the NaCl structure, whereas the opposite holds
for the U–anion distance. Thus, it is likely that the delocalization of f electrons is produced
mainly by hybridization with anion orbitals at the ambient pressure phase, and mainly by the
formation of f bands in the high-pressure phase.

The obtained values of material parameters allow us to predict the phase transition pressure
and associated volume collapse. The results of the lattice model calculations yield the phase
transition pressure of 25.5 (LaS), 30 (U0.08La0.92S), 34 (U0.40La0.60S), 35 (U0.50La0.50S),
47 (U0.60La0.40S), 59 (U0.80La0.20S) and 81 (US) GPa. For all these compounds excellent
agreement is found with available data on the phase transition pressure. Also all these
compounds from the vast volume discontinuity in pressure–volume phase diagram identify
the B1 → B2 structural phase transition. The good agreement both for transition pressures and
volume collapses shows that in the rock salt phase the localized f3 U ions coexist with a partly
occupied narrow f band, effectively describing an intermediate valence phase. The model’s
ability to predict realistic cohesive properties such as the equilibrium volume, the bulk modulus,
its derivative with pressure, the relative stability of crystal structures, and transition pressures
and volumes is exemplified in terms of the screening of the effective Coulomb potential through
the modified ionic charge (Z 2

m). Usually the delocalization of f electrons indeed will result in
a change in Coulomb screening, but, in contrast, one cannot attribute a variation of effective
charge solely to f electrons.

The lattice model calculations also support the validity of the Born criterion. The second-
order elastic constants C11 and C12 increase with increase in pressure up to the phase transition
pressure that identifies the high-pressure structural stability of UxLa1−xS compounds. Further,
C44 decreases linearly with the increase of pressure and does not tend to zero at the phase
transition pressures and is in accordance with the first-order character of the transition.

Conclusively, the proper incorporation of the realistic physical parameters based on the
experimental observations will allow us to interpret a consistent pressure-induced structural
transformation of rare-earth-doped uranium monochalcogenides. However, the deviations
might be ascribed to the extension of the covalent and zero-point motion effects. Nevertheless,
it has been found that this simple model as compared to complicated band structure calculations
may account for a considerable part of the available experimental and theoretical results of the
high-pressure studies.
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